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Abstract. In recent years, a research thread focused on the use of the
unfolding semantics for verification purposes. This started with a pa-
per by McMillan, which devises an algorithm for constructing a finite
complete prefix of the unfolding of a safe Petri, providing a compact rep-
resentation of the reachability graph. The extension to contextual nets
and graph transformation systems is far from trivial because events can
have multiple causal histories. Recently, we proposed an abstract algo-
rithm that generalizes McMillan’s construction to bounded contextual
nets without resorting to an encoding into plain P/T nets. Here, we
present a constructive refinement of the abstract algorithm. To allow for
an inductive definition of concurrency, missing in the original proposal
and essential for an effective unfolding procedure, the key intuition is
to associate histories not only with events, but also with places. Ad-
ditionally, we outline how the proposed algorithm can be extended to
graph transformation systems, for which previous algorithms based on
the encoding of read arcs would not be applicable.

1 Introduction

Partial-order semantics are used to alleviate the state-explosion problem when
model checking concurrent systems. A thread of research started by McMillan [8,
9] proposes the unfolding semantics for the verification of finite-state systems,
modelled as Petri nets. The unfolding of a Petri net [10] is a nondeterministic
process of the net that completely expresses its behaviour; it is an acyclic but
usually infinite net. The algorithm proposed by McMillan constructs a finite
prefix of the unfolding, which is complete, i.e., each marking reachable in the
original net is represented in the prefix.

McMillan’s construction has been generalized to other rule-based formalisms
such as contextual nets [12, 2] and graph grammars [3]. However, problems arise
because these formalisms allow to preserve part of the state in a rewriting step.
This has been observed originally for contextual nets by Vogler et al. [12]: they
showed that for such nets the prefix generated by McMillan’s algorithm might
not be complete because events can have more than one causal history.
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Fig. 1. (a) A safe contextual net; (b) its encoding by replacing read arcs with con-
sume/produce loops; (c) its concurrency-preserving PR-encoding.

A solution to this problem is to encode contextual nets into a “equivalent”
P/T nets, to which McMillan’s algorithm is then applied. Consider the net in
Figure 1 (a), where read arcs are drawn as undirected lines. Net (b) is obtained
by replacing each read arc of (a) with a consume/produce loop, obtaining a net
with the same reachability graph, but whose unfolding could grow exponentially
due to the sequentialization imposed on readers. Net (c) is obtained like net (b),
but first creating “private copies” of the read places for each reader: for safe nets
this Place-Replication (PR) encoding preserves concurrency, and the size of the
unfolding is comparable to that of the original net.

Unfortunately, such approaches are not viable for graph grammars nor, in
general, for rewriting formalisms where states have a structure richer than multi-
sets. Sticking to standard graph rewriting rules, if a rule preserves a node both
encodings would transform it into a rule that deletes and creates again that
node. It is known that such two rules are not equivalent neither in the DPO
approach (where because of the dangling condition, if there is an edge incident
to the node then the second rule might not be applicable to a valid match for
the first one) nor in SPO (where edges incident to the node would be deleted by
the second rule as a side-effect), just to mention two of the most popular graph
transformation approaches.

Another solution is to adapt McMillan’s procedure; i.e., one generalizes it
in such a way that the unfolding of a contextual net is itself a contextual net.
In [12] this was done for the subclass of read-persistent contextual nets, for which
a slight modification of McMillan’s algorithm works, essentially because the re-
striction guarantees that each event has a single causal history. This approach
has been successfully generalized to graph grammars in [1], by identifying a cor-
responding class of read-persistent, finite-state grammars, and showing how the
finite complete prefix computed with a variation of McMillan’s algorithm could
be used for verifying properties of the original grammar.

However, read-persistency can be a strong restriction. Recently, we have pro-
posed an algorithm that works for the whole class of bounded contextual nets [6].
The main idea is to equip events with causal histories. Instead of building the
prefix by adding one event at a time, we add one pair (event, history) at a time.
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While [6] provided the theoretical foundations of contextual unfoldings, im-
portant practical concerns were left unresolved. E.g., [6] did not address how
to actually compute the pairs that are added to the unfolding. Here, we re-
fine the algorithm, designing an effective, concrete procedure for computing the
unfolding prefix. This is based on the idea of associating histories not only to
events, but also to places. This eases the inductive computation of the relation
of concurrency, and thus the construction of the prefix of the unfolding.

Moreover, we argue that the proposed algorithm can be adapted smoothly
to graph grammars as well, even if, because of space constraints, the technical
details are not worked out. Section 5 discusses this issue. A full version of the
paper containing the proofs of the main technical lemmata can be found at
http://www.math.unipd.it/~baldan/FinPrefAlg-Proofs.pdf.

2 Contextual nets and their unfolding

In this section we review contextual nets and their unfoldings, following [6].

2.1 Contextual nets

We recall some notation for multisets. Let A be a set; a multiset of A is a
function M : A → N where {a ∈ A : M(a) > 0} is finite. The set of multisets of
A is denoted by A⊕. The usual operations such as multiset union ⊕ or multiset
difference ⊖ are used. A function f : A → B induces a function on multisets
denoted f⊕ : A⊕ → B⊕. We write M ≤ M ′ if M(a) ≤ M ′(a) for all a ∈ A and
a ∈ M for M(a) > 0. Function n̄ : A → N is defined as n̄(a) = n for all a ∈ A.

Definition 1 (contextual net). A contextual Petri net (c-net) is a tuple N =
〈S, T, •(.), (.)•, (.),m〉, where S is a set of places, T is a set of transitions, and
•(.), (.)• : T → S⊕, (.) : T → P(S) are functions which provide the pre-set,

post-set, and context of a transition; m ∈ S⊕ is the initial marking. We assume
•t 6= 0̄ for each transition t ∈ T .

In the following when considering a c-net N , we will implicitly assume N =
〈S, T, •(.), (.)•, (.),m〉. Given a place s ∈ S we define •s = {t ∈ T : s ∈ t•},
s• = {t ∈ T : s ∈ •t}, s = {t ∈ T : s ∈ t}.

An example of a contextual net, inspired by [12], is depicted in Fig. 2(a). For
instance, referring to transition t1 we have •t1 = s1, t1

• = s3 and t1 = {s2}.

Definition 2 (firing). Let N be a c-net. A transition t ∈ T is enabled at a
marking M ∈ S⊕ if •t ⊕ t ≤ M . In this case, its firing produces the marking
M ′ = M ⊖ •t⊕ t•, written as M [t〉M ′.

A marking M of a c-net N is called reachable if there is a finite sequence of
firings leading from the initial marking to M , i.e., m [t1〉M1 [t2〉M2 . . . [tn〉M .
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Fig. 2. (a) A contextual net N0, (b) its unfolding Ua(N0) and (c) a complete enriched
prefix.

Definition 3 (bounded, safe and semi-weighted nets). A c-net N is called
n-bounded if every reachable marking M satisfies M ≤ n̄. It is called safe if it
is 1-bounded and, for any t ∈ T , •t, t• are sets (rather than general multisets).
A c-net N is called semi-weighted if the initial marking m is a set and, for any
t ∈ T , t• is a set.

We restrict to semi-weighted nets in order to simplify the presentation. The
treatment of general nets would lead to some technical complications in the
definition of the unfolding (Definition 9), related to the fact that an occurrence
of a place would not be identified uniquely by its causal history.

2.2 Occurrence c-nets

We will introduce two relations among transitions: causality and asymmetric
conflict. Occurrence c-nets are safe c-nets where these relations satisfy certain
acyclicity and well-foundedness requirements.

Causality is defined as for ordinary nets, with an additional clause stating
that transition t causes t′ if it generates a token in a context place of t′.

Definition 4 (causality). Let N be a safe c-net. The causality relation < is
the least transitive relation on S ∪ T such that (i) if s ∈ •t then s < t; (ii) if
s ∈ t• then t < s; (iii) if t• ∩ t′ 6= ∅ then t < t′. Given x ∈ S ∪ T , we write ⌊x⌋
for the set of causes of x in T , defined as ⌊x⌋ = {t ∈ T : t ≤N x} ⊆ T , where
≤N is the reflexive closure of <.
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We say that a transition t is in asymmetric conflict with t′, denoted t ր t′, if
whenever both t and t′ fire in a computation, t fires before t′. The paradigmatic
case is when transition t′ consumes a token in the context of t, i.e., when t∩•t′ 6=
∅, as for transitions t′

1
and t′

2
in Fig. 2(b) (see [3, 11, 7, 12]).

Definition 5 (asymmetric conflict). Let N be a safe c-net. The asymmetric
conflict relation ր is the binary relation on T defined as

t ր t′ if t ∩ •t′ 6= ∅ or (t 6= t′ ∧ •t ∩ •t′ 6= ∅) or t < t′.

For X ⊆ T , րX denotes the restriction of ր to X, i.e., րX=ր ∩ (X ×X).

An occurrence c-net is a safe c-net that exhibits an acyclic behaviour, satis-
fying suitable conflict-freeness requirements.

Definition 6 (occurrence c-nets). A c-net N is called occurrence c-net if

– N is safe, and for any s ∈ S, |•s| ≤ 1 (no backward conflicts)
– < is a strict partial order and ⌊t⌋ is finite for any t ∈ T ;
– m = {s ∈ S : •s = ∅} (the initial marking is the set of minimal places);
– ր⌊t⌋ is acyclic for all t ∈ T .

The last condition of the definition corresponds to the requirement of ir-
reflexivity for the conflict relation in ordinary occurrence nets. An example of
an occurrence c-net can be found in Fig. 2(b). From now on, consistently with
the literature, we shall often call the transitions of an occurrence c-net events.

Definition 7 (configurations). Let N be an occurrence c-net. A finite set of
events C ⊆ T is called a configuration if

1. րC is acyclic;
2. C is left-closed w.r.t. ≤, i.e. for all t ∈ C, t′ ∈ T , t′ ≤ t implies t′ ∈ C.

The marking produced by a configuration C is C• = m ∪
⋃

t∈C t• −
⋃

t∈C
•t. A

finite set M of places is called concurrent, written conc(M), if there exists a
configuration C such that M ⊆ C•.

We denote by Conf (N) the set of all configurations of N . They are equipped
with the ordering defined as C1 ⊑ C2, if C1 ⊆ C2 and ¬(t2 ր t1) for all t1 ∈ C1,

t2 ∈ C2 \ C1. Furthermore two configurations C1, C2 are said to be in conflict,
written C1#C2, when there is no C ∈ Conf (N) such that C1 ⊑ C and C2 ⊑ C.

Configurations characterise the possible (concurrent) computations of an occur-
rence c-net. The relation ⊑ is a computational order of configurations: C ⊑ C ′

if C can evolve and become C ′. Different from non-contextual occurrence nets
this order is not simply subset inclusion among configurations [6].

Given a configuration C and an event t ∈ C, the history of t in C is the set
of events that must precede t in the (concurrent) computation represented by
C. For ordinary nets the history of an event t coincides with the set of causes
⌊t⌋, independently of the configuration where t occurs. For c-nets, the presence
of asymmetric conflicts implies that an event may have several histories.
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Definition 8 (history). Let N be an occurrence net. Given a configuration
C and an event t ∈ C, the history of t in C, denoted by C[[t]], is defined as
C[[t]] = {t′ ∈ C : t′(րC)

∗t}. The set of possible histories of an event t, namely
{C[[t]] : C ∈ Conf (N) ∧ t ∈ C} is denoted by Hist(t).

2.3 Unfolding of contextual nets

Given a semi-weighted c-net N , an unfolding construction allows us to obtain an
occurrence c-net Ua(N) that describes the behaviour of N [2, 12]. The unfolding
can be constructed inductively by starting from the initial marking of N and
then by adding, at each step, an occurrence of each transition of N which is
enabled by (the image of) a concurrent subset of the places already generated.

Definition 9 (unfolding). Let N = 〈S, T, •(.), (.)•, (.),m〉 be a semi-weighted

c-net. The unfolding Ua(N) = 〈S′, T ′, •(.), (.)•, (.),m′〉 of the net N is the oc-

currence c-net generated by the following inference rules, where Mp,Mc ⊆ S′;
Mp ∩Mc = ∅; and π2(〈x, y〉) = y.

s ∈ m

〈∅, s〉 ∈ S′

t′ = 〈Mp,Mc, t〉 ∈ T ′ s ∈ t•

〈t′, s〉 ∈ S′

t ∈ T π2
⊕(Mp) =

•t π2
⊕(Mc) = t conc(Mp ∪Mc)

〈Mp,Mc, t〉 ∈ T ′

The initial marking is m′ = {〈∅, s〉 : s ∈ m}, and given t′ = 〈Mp,Mc, t〉

•t′ = Mp t′ = Mc t′• = {〈t′, s〉 : s ∈ t•}

The folding morphism fN = 〈fT , fS〉 : Ua(N) → N is a pair of mappings fT :
T ′ → T and fS : S′ → S defined by fT (t

′) = t for t′ = 〈Mp,Mc, t〉 and fS(s
′) = s

for s′ = 〈x, s〉.

Places and events in the unfolding of a c-net represent respectively tokens and
firing of transitions in the original net. Each place in the unfolding is a pair
recording the “history” of the token and the corresponding place in the original
net. Each event is a triple recording the precondition and context used in the
firing, and the corresponding transition in the original net. A new place with
empty history 〈∅, s〉 is generated for each place s in the initial marking. Moreover,
a new event t′ = 〈Mp,Mc, t〉 is inserted in the unfolding whenever we can find a
concurrent set of places (precondition Mp and context Mc) that corresponds, in
the original net, to a marking that enables t. For each place s in the post-set of
such t, a new place 〈t′, s〉 is generated, belonging to the post-set of t′. The folding
morphism f maps each place (event) of the unfolding to the corresponding place
(transition) in the original net.

An initial part of the unfolding of the net N0 in Fig. 2(a) is represented in
Fig. 2(b). The folding morphism from Ua(N0) to N0 is implicitly represented by
the name of the items in the unfolding.
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Proposition 1 (completeness of the unfolding). Let N be a c-net and let
Ua(N) = 〈S′, T ′, •(.), (.)•, (.),m′〉 be its unfolding. A marking M ∈ S⊕ is cover-

able in N iff there exists a concurrent subset X ⊆ S′ such that M = fS
⊕(X).

Proposition 1 captures the sense in which the unfolding is complete w.r.t. the
original net. This notion of completeness is slightly weaker than that of [8, 12],
for example, as it is concerned with markings only, and not with transitions.

3 Computing the prefix as an enriched occurrence net

In this section we first recall the notion of enriched occurrence net, which is
an occurrence net which records a subset of histories for each involved event.
Next we describe an algorithm for computing a finite complete prefix of the full
unfolding of a c-net N , which is a mild variation of that in [6]. The construction
starts from the initial marking, and iteratively adds new extended events repre-
senting occurrences of transitions of N . The prefix will actually be an enriched
occurrence net, where only histories which are considered “useful to produce new
markings” are recorded.

Definition 10 (enriched occurrence net, extended event). An enriched
occurrence net is a pair E = 〈NE , χE〉, where NE = 〈SE , TE ,

•(.), (.)•, (.),mE〉
is an occurrence net and χE : TE → P(P(TE)) is a function such that

– for any t ∈ TE, ∅ 6= χE(t) ⊆ Hist(t)
– for all t, t′ ∈ TE, for any C ∈ χE(t) if t

′ ∈ C then C[[t′]] ∈ χE(t
′).

An extended event for an occurrence net NE is a pair ǫ = 〈t,Ht〉, where
t ∈ TE and Ht ∈ Hist(t). We say that 〈t,Ht〉 covers another extended event
〈t′, Ht′〉 when Ht′ ⊑ Ht. An enriched occurrence net E = 〈NE , χE〉 contains the
extended event ǫ = 〈t,Ht〉, written ǫ ∈ E, if t ∈ TE and Ht ∈ χE(t).

From now on, N = 〈S, T, •(.), (.)•, (.),m〉 is a fixed semi-weighted c-net,

Ua(N) = 〈S′, T ′, •(.), (.)•, (.),m′〉 is its unfolding, and fN : Ua(N) → N is the
folding morphism.

Definition 11 (enriched prefix). An enriched prefix of the unfolding Ua(N)
is any enriched occurrence net E such that NE is a prefix of Ua(N).

An example of enriched prefix of Ua(N0) in Fig. 2(b) is given in Fig. 2(c).
For any event t the set of histories χE(t) is written near to the event itself.

During the construction of a complete prefix of the unfolding, at each step
we will consider the addition of a possible extension to the current prefix, that
is, of an extended event whose pre-set and context are already there, and whose
history is compatible with the histories contained in the current prefix for the
involved events.

Definition 12 (possible extension). Let E be an enriched prefix of Ua(N).
A possible extension of E is an extended event ǫ = 〈t,Ht〉 of Ua(N) such that
ǫ 6∈ E and for any t′ ∈ Ht − {t} it holds that 〈t′, Ht[[t

′]]〉 ∈ E.
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It can be easily seen that ǫ = 〈t,Ht〉 is a possible extension when E′ def
= E ∪ ǫ,

obtained from E by inserting transition t and its post-set (if it is not already
there) and by adding Ht to the set of histories of t, is an enriched prefix of
Ua(N). For instance, for the prefix in Fig. 2(c) (assuming that t′′

0
is not there)

two possible extensions are ǫ = 〈t′′
0
, {t′

0
, t′

1
, t′

2
, t′′

0
}〉 and ǫ′ = 〈t′

2
, {t′

0
, t′

2
}〉. Instead,

〈t′′
0
, {t′

0
, t′

2
, t′′

0
}〉 is not a possible extension, since t′

2
does not have the history

{t′
0
, t′

2
}.

A configuration of Ua(N) represents a computation in the unfolding itself,
which in turn maps, via the folding morphism, to a computation of N . Hence
we can define the marking of N after a configuration of the unfolding.

Definition 13 (marking after a configuration). Let C ∈ Conf (Ua(N)) be
a configuration. The marking of N after C is defined as mark(C) = fS

⊕(C•).

In [8] a cut-off is defined as an event of the unfolding that can be omitted
safely because there exists another event with a smaller causal history generating
the same marking. In our setting a cut-off is defined as an extended event, thus
taking histories explicitly into account.

Definition 14 (cut-off). Let E be an enriched prefix of the unfolding. An ex-
tended event 〈t,Ht〉 in E is called a cut-off if either mark(Ht) = m, the initial
marking of N , or there is another extended event 〈t′, Ht′〉 of E satisfying

(1) mark(Ht) = mark(Ht′) and
(2) |Ht′ | < |Ht|.

The algorithm shown in Fig. 3 computes a complete finite prefix. It is analo-
gous to the standard algorithm for ordinary Petri nets, but applied to extended
events: during the construction, each event t of Fin, the currently built part of
the prefix, has associated also a set of histories χFin(t), thus making the prefix
under construction an enriched occurrence net.

Fin := m′, χFin := ∅
pe := {〈t′, ∅〉 : t′ enabled by m′}
while pe 6= ∅ do

– take ǫ = 〈t,H〉 ∈ pe such that |H| is minimal.
– pe = pe − {ǫ}
– if ǫ would be a cut-off in Fin, do nothing, else insert ǫ in Fin, i.e.,

• if t is already present in Fin then add the history H to χFin(t);
• otherwise add t and the places in t• to Fin, and set χFin(t) := {H}.
• pe := pe ∪ PE(Fin, ǫ)

Fig. 3. Algorithm for computing the finite prefix

The algorithm is similar to, but more abstract than, the algorithm in [6]. In
fact, the present algorithm uses the function PE which, applied to the enriched
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prefix Fin and to an extended event ǫ, is expected to return a set of extended
events. In [6], instead, the set of extended events added at each iteration was
described (in a pretty abstract, non-constructive way) in the algorithm itself.

The main result shows that the algorithm terminates and correctly com-
putes a complete finite prefix of the unfolding, provided that the set returned by
PE (Fin, ǫ) contains at least all the possible extensions of Fin (see Definition 12)
which cover ǫ.

Theorem 1 (correctness and completeness). If the net N is finite and
n-bounded, and if function PE applied to any enriched prefix Fin and to an
extended event ǫ returns a set of extended events containing at least all the
possible extensions of Fin covering ǫ, then the algorithm in Fig. 3 terminates,
and the resulting enriched prefix Fin0 is complete.

The proof of termination goes exactly as for [6, Theorem 3]: since the set of
reachable markings is finite and at each iteration the computed prefix does not
include cut-offs, a combinatorial argument shows that the number of iterations
must be finite. Also the proof of completeness in [6, Theorem 3] can be adapted
easily, because the only critical hypothesis is that every possible extension of the
current prefix is considered for inclusion, and this is true by the assumption on
function PE.

As an example, consider the net N0 and its unfolding Ua(N0) in Fig. 2. The
algorithm (as detailed in the next section) would produce the enriched prefix
depicted in Fig. 2(c). Note that it includes the event t′

2
. In fact t′

2
has two possible

histories: the minimal history H2 = ⌊t′
2
⌋ = {t′

0
, t′

2
} and H ′

2
= {t′

0
, t′

1
, t′

2
}. While

〈t′
2
, H2〉 is a cut-off, the pair 〈t′

2
, H ′

2
〉 is not, and thus it is included.

4 Computing the possible extensions

During the construction of the complete prefix, we must compute the possible
extensions of the current prefix. The key idea to do this effectively and incre-
mentally is to equip places with histories.

4.1 Extended places

A first simple observation is that the histories of an event t in an enriched oc-
currence net E are obtained from the histories of the events that are in direct
asymmetric conflict with t. Referring to Fig. 4, the histories for t can be con-
structed by taking one history for every direct cause of t (i.e., t1, t2 and t3),
and possibly one for t′

3
that is in direct asymmetric conflict with t. In contrast,

a transition that merely reads from the context of t, like t′
1
, is not in direct

asymmetric conflict with t and therefore not considered. If these histories are
“consistent” they can be joined to form a history of t. Once this history is added
to the prefix, it can be used to generate new histories for the events (not de-
picted) that use the post-set s or that consume the context s1. Therefore the
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Fig. 4. Predecessors w.r.t. asymmetric conflict of an event t.

generation of a new history for an event has to be “propagated” according to
the structure of the net, because it can entail new histories for other events.

In order to concretely realize this sort of propagation in the algorithm we will
rely on the notion of extended place, which is a place with an associated history.
Hereafter, E = 〈N,χ〉 denotes a fixed enriched occurrence net.

Definition 15 (histories for places). The causal histories of a place s ∈ S,
denoted χc(s), are the histories of the transition that generates s (i.e., χc(s) =
χ(•s)) if s 6∈ m. If instead s ∈ m, then χc(s) = {∅}. The read histories of
s, denoted χr(s), are the histories of the events which read s, i.e., χr(s) =⋃

t∈s χ(t).

In words, a place inherits histories from the (unique) event which generates the
place (causal histories) and from events which read the place (read histories).

Definition 16 (extended places). An extended place is a pair σ = 〈s,H〉
where s ∈ S and H ∈ χc(s) ∪ χr(s). It is called a causal extended place if
H ∈ χc(s) and a read extended place if H ∈ χr(s).

Lemma 1. Let 〈t,H〉 be an enriched event and s ∈ •t∪t. Then there is a unique
history H ′ ∈ χc(s) such that H ′ ⊑ H.

Let 〈s,H〉 be a read extended place and H ′ ∈ χc(s) be the unique causal

history such that H ′ ⊑ H. We denote 〈s,H ′〉 by 〈s ,H 〉↑. We write πH and πS

for the projections of an extended place to its components, i.e., given σ = 〈s,H〉,
πH(σ) = H and πS(σ) = s.

More intuition can be obtained from Fig. 5, where events and places are
annotated with all their histories. Place s3 is associated with three extended
places: one causal extended place 〈s3, ∅〉 and two read extended places 〈s3, {t1}〉,
〈s3, {t2}〉. In order to avoid combinatorial explosion we do not consider 〈s3, {t1, t2}〉
which would represent two readings of place s3. Now, the histories for transition
t3 (according to Definition 8) are four: {t3}, {t3, t1}, {t3, t2} and {t3, t1, t2}. In-
terestingly, all of them can be obtained as a combination of the extended places
of s3, without considering the extended events of t1 and t2.

More generally, note that for each place we have, conceptually, one extended
place for each possible history of the (only) event which generates the place, and

10



76540123•

s1

��

〈s1,∅〉 76540123•

s2

��

〈s2,∅〉

t1

��

〈t1,{t1}〉 76540123•
s3

〈s3,∅〉

〈s3,{t1}〉

〈s3,{t2}〉

��

t2

��

〈t2,{t2}〉

76540123
s4

〈s4,{t1}〉 t3

〈t3,{t3}〉

〈t3,{t3,t1}〉

〈t3,{t3,t2}〉

〈t3,{t3,t1,t2}〉

76540123
s5

〈s5,{t2}〉

Fig. 5. Illustration of extended transitions and places

one for each event that reads the place. Hence a new history for a transition t can
be obtained by looking only at the extended places in its pre-set and context,
without checking the transitions in asymmetric conflict with t, thus making the
construction more local. The generation of a history for t next generates new
histories (extended places) for the places in the post-set and in the context.
This can be formalized elegantly by defining a notion of pre-set and post-set for
extended events.

Definition 17 (pre-set and post-set of extended events). Given an ex-
tended event ǫ = 〈t,H〉, we define

– •ǫ = {〈s,H ′〉 | s ∈ •t ∧ H ′ ∈ χc(s) ∪ χr(s) ∧H ′ ⊑ H}
– ǫ̂ = {〈s,H ′〉 | s ∈ t ∧ H ′ ∈ χc(s) ∧ H ′ ⊑ H}
– ǫ• = {〈s,H〉 | s ∈ t•}
– ǫ̌ = {〈s,H〉 | s ∈ t}

Observe, in particular, that an extended event has “two” context sets: ǫ̂, the
extended places which are read (these have to be causal extended places, because
reading a place should not be causally related to other concurrent events reading
the same place) and ǫ̌, the extended places which are generated by the readings
of ǫ (these are read extended places). For instance, referring to Fig. 5, we can
consider the extended event ǫ = 〈t1, {t1}〉. Then we have •ǫ = 〈s1, ∅〉, ǫ̂ = 〈s3, ∅〉,
ǫ• = 〈s4, {t1}〉, and ǫ̌ = 〈s3, {t1}〉.

In order to formalize the intuition that the extended places used when gen-
erating a new extended event are “consistent”, we introduce two relations on
extended places: concurrency and subsumption.

Definition 18 (concurrency). Let σ1 = 〈s1, H1〉, σ2 = 〈s2, H2〉 be extended
places in an enriched prefix, σ1 6= σ2. We say that they are concurrent, written
σ1 a σ2, if

– ¬(H1#H2) (thus H1 ∪H2 is a configuration)
– s1, s2 ∈ (H1 ∪H2)

•

11



In words, σ1 and σ2 are concurrent when the histories H1 and H2 associated
with the two places are compatible, hence their union is a configuration C, and
after executing C both places are marked. Note that because of the presence of
the histories, concurrency turns out to be a binary relation.

We will see in Lemma 2 that, as expected, each pair of extended places in the
pre-set of an extended event is concurrent. But the pre-set of an extended event
also satisfies an important closure property, that we explain by considering the
following example.
Consider the net to the right. After the execution of t1, for s

we have one causal history 〈s, ∅〉 and one read history, namely
〈s, {t1}〉. Now, transition t2 could, in principle, be fired using
the causal histories 〈s2, {t1}〉 and 〈s, ∅〉 and no read history.
However, observe that the extended place 〈s, {t1}〉 is implicitly
there, since the insertion of 〈s2, {t1}〉 implies that necessarily
s has been read by t1: we say that 〈s2, {t1}〉 subsume 〈s, {t1}〉,
written 〈s2, {t1}〉 ∝ 〈s, {t1}〉. Notice that the fact that 〈s, {t1}〉
is not mentioned explicitly does not affect the new history that
we are building for t2, but it causes serious problems when
computing the concurrency relation.

76540123•s1

��
t1

��

76540123•
s

����
�
�
�
�
�
�
�

76540123s2

��
t2

Definition 19 (subsumption relation). For σ = 〈s,H〉, σ′ = 〈s′, H ′〉 ex-
tended places, we write σ ∝ σ′ (σ subsumes σ′) when s′ ∈ H• and there exists
t ∈ H such that s′ ∈ t and H ′ = H[[t]].

Note that if σ ∝ σ′, then σ′ is necessarily a read extended place.
Lemma 2 provides a characterisation of extended events which will be used

in the algorithm when looking for possible extensions of the current prefix. It
says that an extended event ǫ = 〈t,H〉 can be generated from a set of extended
places which cover the pre-set and the context of t, and which have “consistent”
histories, whose union will be H. Then ǫ generates a causal extended place for
each event in the post-set of t and one read extended place for each event in
the context of t. In particular, note that the pre-set of an extended event is
automatically closed under the subsumption relation. For this reason, in the
algorithm, when looking for possible extensions we will take a set of extended
places X which “enables” a transition and which satisfies a closure condition
w.r.t. subsumption analogous to that in item 4 below.

Lemma 2 (events). Let ǫ = 〈t,H〉 be an extended event. If we let Xp = •ǫ and
Xc = ǫ̂, and X = Xp ∪Xc, then

1. πS(Xp) =
•t and πS(Xc) = t;

2. for any place s ∈ πS(X) there is a unique causal history H ′ ∈ χc(s) such
that 〈s,H ′〉 ∈ X;

3. for any place s ∈ πS(X), if there is a read history H ′ ∈ χr(s) such that
〈s,H ′〉 ∈ X then s ∈ •t;

4. for any σ ∈ X, if σ ∝ σ′ and σ′↑ ∈ Xp then σ′ ∈ Xp (subsumption-
closedness)

12



5. X is pairwise concurrent

and H =
⋃

πH(X) ∪ {t}.

The next two lemmata provide an inductive characterisation of the concur-
rency and subsumption relations that will be pivotal for identifying the possible
extensions of the prefix.

Lemma 3 (concurrency). Let σ = 〈s,H〉 and σ′ = 〈s′, H ′〉 be extended places
in O, with |H| ≥ |H ′|. Then σ a σ′ if and only if H = H ′ = ∅ or σ ∈ ǫ• ∪ ǫ̌ and
one of the following holds

1. σ′ ∈ ǫ• ∪ ǫ̌, σ 6= σ′

2. σ′ ∈ ǫ̂

3. (a) for all σ′′ ∈ •ǫ ∪ ǫ̂, it holds σ′′
a σ′ and (b) if σ′ ∝ σ′′′, with σ′′′↑ ∈ •ǫ

then σ′′′ ∈ •ǫ

Lemma 4 (subsumption). Let σ and σ′ be extended places in O. Then σ ∝ σ′

if and only if σ ∈ ǫ• ∪ ǫ̌ and one of the following holds

1. σ′ ∈ ǫ̌ or
2. there is σ′′ ∈ •ǫ ∪ ǫ̂ such that σ′′ ∝ σ′ and σ a σ′.

4.2 Computing the possible extensions

With the notions introduced so far, finally we can show how to generate the pos-
sible extensions of a given enriched prefix. We will refer to the construction of the
prefix of the unfolding of a fixed semi-weighted c-net N = 〈S, T, •(.), (.)•, (.),m〉.

According to Lemma 2, in order to generate a new extended event, we can
choose a concurrent set of extended places which “enables” the event. For any
place in the pre-set and context we take a single causal history (condition 2
below). Only for places in the pre-set we can additionally take some read histories
(condition 3 below). The fact that read histories can be consumed but not read
corresponds to the fact that, referring to Fig. 4, to build a history for t we take
additional histories only for transitions which read from consumed places (such
as t′

3
) and not for those that read from context places (such as t′

1
).

This leads to the following characterization of the possible extensions of an
enriched prefix: its proof is based on Lemma 2.

Proposition 2 (possible extensions). A possible extension of an enriched
prefix Fin is an extended event ǫ = 〈t,Ht〉 obtained as follows. Find sets of
extended places Xp, Xc such that, if we denote by X = Xp ∪Xc then

1. f(πS(Xp)) =
•tN and f(πS(Xc)) = tN for some transition tN of the original

net; the corresponding event in the unfolding is thus t = 〈πS(Xp), πS(Xc), tN 〉;
2. for any place s ∈ πS(X) there is exactly a single causal history H ∈ χc(s)

such that 〈s,H〉 ∈ X;
3. for any s ∈ πS(X) if there is a read history 〈s,H〉 ∈ X for some H ∈ χr(s)

then s ∈ •t;
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4. for any extended place σ ∈ X, if there is a σ′ such that σ ∝ σ′ and σ′↑ ∈ Xp

then σ′ ∈ X.
5. X is pairwise concurrent

The history for t is defined as Ht = {t} ∪
⋃
πH(X).

Points 4 and 5 of Proposition 2 require to check the subsumption and the
concurrency relations between certain pairs of extended places. The next result,
that can be proved directly from the characterization of the two relations given
in Lemmata 3 and 4, shows that both the concurrency and the subsumption
relations can be computed inductively during the construction of the prefix.

Proposition 3 (computing concurrency and subsumption, inductively).
Let Fin be a finite enriched prefix of the unfolding obtained, according to the al-
gorithm of Fig. 3, by starting with the initial marking m′ and adding extended
events ǫ0, . . . , ǫn. Then for each pair σ and σ′ of extended places of Fin, σ a σ′

(σ ∝ σ′, respectively) if and only if this can be deduced using the following rules:

1. [Base case]: For all s1, s2 ∈ m′ (initial marking) 〈s1, ∅〉 a 〈s2, ∅〉.
2. [Inductive case]: Assume that the extended event ǫi = 〈t,H〉 has been added,

using the set X = Xp∪Xc of extended places, thus t = 〈πS(Xp), πS(Xc), tN 〉.
Adding ǫi produces a set of extended places Y = Yp∪Yc, where Yp = t•×{H}
are causal extended places and Yc = t× {H} are read extended places.
Then the concurrency relation can be extended to pairs including at least one
new extended place using the following inference rules:

σ, σ′ ∈ Y σ 6= σ′

σ a σ′

σ ∈ Y σ′ ∈ Xc

σ a σ′

σ ∈ Y ∀σ′′ ∈ X.σ′′
a σ′ ∀σ′′ ∈ Xp. (σ

′′ = σ′′′↑ ∧ σ′ ∝ σ′′′ → σ′′′ ∈ Xp)

σ a σ′

Similarly, the subsumption relation can be extended to pairs including at least
one new extended place, using rule (new) for the subsumptions induced by
ǫi, and rule (inh) for inheriting the subsumptions of the premises, if not
consumed:

σ ∈ Y σ′ ∈ Yc

σ ∝ σ′ (new)
σ ∈ Y σ′′ ∈ X σ′′ ∝ σ′ σ a σ′′

σ ∝ σ′ (inh)

We conclude by stating the correctness of the definition of the function PE

based on Propositions 2 and 3.

Corollary 1 (definition and correctness of PE). Let PE be the function
that, when applied to an enriched prefix Fin and to an extended event ǫ, returns
all the possible extensions of Fin, as defined in Proposition 2, built using at least
one extended place generated by ǫ (i.e., using a set of extended places X such
that X ∩ (ǫ• ∪ ǫ̌) 6= ∅). Then PE satisfies the requirements of the statement of
Theorem 1.
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5 Finite prefix for graph transformation systems

As mentioned in the introduction, the adequate treatment of read arcs and of the
“reading” of items in general, is particularly important for graph transformation
systems (GTSs). In fact, for GTSs—due to the presence of dangling conditions—
the preservation of a node cannot be simulated by its deletion and subsequent
re-creation. This means that the use of a “direct” algorithm which is not based
on an encoding of read arcs as consume-create loops, while being an option for
contextual nets, becomes mandatory for GTSs.

It has been observed earlier that in the absence of inhibiting conditions,
which occur in DPO, the unfolding of graph transformation systems can be
defined analogously to the unfolding of contextual nets. In [1, 4] we have given
the relevant definitions of occurrence graph grammars and we have generalized
relations such as causality and asymmetric conflict to that setting. The role
of places is played by the type graph, the initial graph represents the initial
marking of the net and the rules correspond to transitions. In [1] the absence of
inhibiting conditions was ensured by forbidding the deletion of nodes, whereas
in [4] we used a more general setting, namely the single-pushout (SPO) approach.
Nevertheless, the more constrained format of rules allowed in [1] is balanced by
the fact that one can take isomorphisms of graphs “up to isolated nodes”, which
leads to a more liberal notion of a “finite-state” graph transformation system.

Space limitations do not allow a detailed exposition of this development, but
all constructions of the paper and especially the technical issues of Section 4—
including the characterisation of extended events and the computation of the
causality and subsumption relations—can be performed also for single-pushout
rewriting. This would no longer be true if we switched to double-pushout rewrit-
ing where the presence of inhibiting conditions (“a node can not be deleted unless
all adjacent edges are deleted”) leads to a formalism which generalizes inhibitor
nets, for which the unfolding semantics becomes much more involved.

In order to obtain finite complete McMillan prefixes for GTSs we clearly need
to restrict to finite-state GTSs, where the number of reachable graphs is finite
(up to isomorphism). More technically, this amounts to requiring that for every
reachable graph, typed over the type graph T , the size of the preimage of an
element of T is bounded by a constant k (this is analogous to the boundedness
condition for Petri where one requires that for any reachable marking the number
of tokens in each place is bounded by a fixed constant).

We also believe that this work can be generalized to rewriting in adhesive
categories if we use a sesqui-pushout-like setting, as described in [5]. This would
require to single out for a given rewriting system, a set of “atomic” subobjects
from which any rewritten object can be built, playing the role of places.

6 Conclusion

We have described a worked-out procedure for computing McMillan prefixes for
(bounded) contextual Petri nets and we argued that it can be extended to the
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computation of the prefix of the unfolding of finite-state graph transformation
systems. Such prefixes are very valuable for the partial order verification of highly
concurrent systems, where the use of unfolding techniques sometimes leads to an
exponential gain in efficiency. While a part of the theoretical basis was already
described in [6] it turned out that for aiming at an efficient implementation we
needed more concepts such as extended places and the subsumption relation.

As shown also in this paper, the computation of finite complete prefixes for
contextual nets is quite involved, but it is unclear whether it is possible to avoid
the high complexity. And as we already mentioned, for graph transformation
systems and related formalisms (with a structured state and preservation of items
in a computational step), approaches based on the encoding of item preservation
by deletion and re-creation are not viable.

We are currently working on an implementation which will give us concrete
runtime results and which will be useful for the partial order verification of the
single-pushout graph transformation systems.
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